Some Hadronic Properties with Light Front Holography Alfredo Vega

Departamento de Física y Centro Científico Tecnológico de Valparaíso (CCTVal) UTFSM

Work done in collaboration with I. Schmidt, T. Gutsche, T. Branz and V. Lyubovitskij

Outline

Introduction

Mesonic Phenomenology.

Generalized Parton Distributions in a Holographical Model

- N=4 SYM is different to QCD, but we can argue that in some situations both are closer. Ej: Heavy Ion Collisions.
- Gauge / Gravity ideas can be expanded in several directions. This give us a possibility to get a field theory similar to QCD with gravity dual.
- You can use Gauge / Gravity as a nice frame to built phenomenological models with extra dimensions that reproduce some QCD facts.

- N=4 SYM is different to QCD, but we can argue that in some situations both are closer. Ej: Heavy Ion Collisions.
- Gauge / Gravity ideas can be expanded in several directions. This give us a possibility to get a field theory similar to QCD with gravity dual.
- You can use Gauge / Gravity as a nice frame to built phenomenological models with extra dimensions that reproduce some QCD facts.

- N=4 SYM is different to QCD, but we can argue that in some situations both are closer. Ej: Heavy Ion Collisions.
- Gauge / Gravity ideas can be expanded in several directions. This give us a possibility to get a field theory similar to QCD with gravity dual.
- You can use Gauge / Gravity as a nice frame to built phenomenological models with extra dimensions that reproduce some QCD facts.

- N=4 SYM is different to QCD, but we can argue that in some situations both are closer. Ej: Heavy Ion Collisions.
- Gauge / Gravity ideas can be expanded in several directions. This give us a possibility to get a field theory similar to QCD with gravity dual.
- You can use Gauge / Gravity as a nice frame to built phenomenological models with extra dimensions that reproduce some QCD facts.

Extensions of AdS / CFT to QCD, are related at two approaches:

- Top Down aproach. You start from a string theory on $AdS_{d+1} \times C$, and try to get at low energies a theory similar to QCD in the border.
- Bottom Up approach.

Starting from QCD in 4d we try to build a theory with higher dimensions (not necessarily a string theory).

Extensions of AdS / CFT to QCD, are related at two approaches:

- Top Down aproach. You start from a string theory on $AdS_{d+1} \times C$, and try to get at low energies a theory similar to QCD in the border.
- Bottom Up approach.

Starting from QCD in 4d we try to build a theory with higher dimensions (not necessarily a string theory).

Extensions of AdS / CFT to QCD, are related at two approaches:

- Top Down aproach. You start from a string theory on $AdS_{d+1} \times C$, and try to get at low energies a theory similar to QCD in the border.
- Bottom Up approach.

Starting from QCD in 4d we try to build a theory with higher dimensions (not necessarily a string theory).

* Dictionary.

This tell us how are related elements involved in both sides of Gauge / Gravity duality.

Table: Summary of dictionary considered here.

QCD (4d) Operator (\mathcal{O}) Hadron Mass (M) Twist Dimension ([\mathcal{O}] - S) Wave Function Gravity (5d) Normalizable Modes (Φ) Eigenvalues of Φ Conformal Dimension (Δ) Normalizable Modes (Φ)¹

¹Brodsky and de Teramond, Phys.Rev.Lett.96:201601,2006 (hep-ph/0602252), Phys.Rev.D77:056007,2008 (arXiv:0707.3859).

* Dictionary.

This tell us how are related elements involved in both sides of Gauge / Gravity duality.

Table: Summary of dictionary considered here.

QCD (4d) Operator (\mathcal{O}) Hadron Mass (M) Twist Dimension ([\mathcal{O}] - S) Wave Function Gravity (5d) Normalizable Modes (Φ) Eigenvalues of Φ Conformal Dimension (Δ) Normalizable Modes (Φ) ¹

¹Brodsky and de Teramond, Phys.Rev.Lett.96:201601,2006 (hep-ph/0602252), Phys.Rev.D77:056007,2008 (arXiv:0707.3859).

* Dictionary.

This tell us how are related elements involved in both sides of Gauge / Gravity duality.

Table: Summary of dictionary considered here.

 $\begin{array}{c} \mathsf{QCD} (\mathsf{4d}) \\ \mathsf{Operator} (\mathcal{O}) \\ \mathsf{Hadron} \mathsf{Mass} (\mathsf{M}) \\ \mathsf{Twist} \mathsf{Dimension} ([\mathcal{O}] - \mathsf{S}) \\ \mathsf{Wave} \mathsf{Function} \end{array}$

Gravity (5d) Normalizable Modes (Φ) Eigenvalues of Φ Conformal Dimension (Δ) Normalizable Modes (Φ)¹

¹Brodsky and de Teramond, Phys.Rev.Lett.96:201601,2006 (hep-ph/0602252), Phys.Rev.D77:056007,2008 (arXiv:0707.3859).

Mesonic Phenomenology.²

²Brodsky and de Teramond, Phys.Rev.Lett.96:201601,2006 (hep-ph/0602252), Phys.Rev.D77:056007,2008 (arXiv:0707.3859).

A. V, Ivan Schmidt, Tanja Branz, Thomas Gutsche, Valery E. Lyubovitskij, Phys.Rev.D80:055014,2009 (arXiv:0906.1220).

T. Branz, T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. V, Phys. Rev. D 82, 074022 (2010) (arXiv:1008.0268).

Light Front : $F(q^2) = 2\pi \int_0^1 dx \frac{(1-x)}{x} \int d\zeta \zeta J_0(\zeta q \sqrt{\frac{1-x}{x}}) \frac{|\psi_{q_1\bar{q}_2}|^2}{(1-x)^2},$

10.00

AdS:
$$F(q^2) = \int_0^\infty dz \Phi(z) J(q^2, z) \Phi(z)$$

where $\Phi(z)$ correspond to modes that represent hadrons and $J(q^2, z)$ represent to electromagnetic current. Notice that if we consider $z = \zeta$, and if we can write $J(q^2, z)$ as

$$J(q^2,\zeta) = \int_0^1 dx \ f(x) J_0(\zeta q \sqrt{\frac{1-x}{x}})$$

Relationship between Mesonic Wave Function and AdS Modes.

$$|\psi(x,\zeta)|^2 = A_{\zeta}^{1} x(1-x) f(x) |\Phi(\zeta)|^2,$$

***** Dual modes to Mesons.

$$S_{\Phi} = \frac{(-1)^J}{2} \int d^d x dz \sqrt{g} e^{-\phi(z)} \left(\partial_N \Phi_J \partial^N \Phi^J - \mu_J^2(z) \Phi_J \Phi^J \right),$$

$$ds^2 = \left(\frac{R}{z}\right)^2 (\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^2)$$
 and $\phi(z) = \kappa^2 z^2$

$$\left[-\frac{d^2}{dz^2}+U_J(z)\right]\Phi_{nJ}(z)=M_{nJ}^2\Phi_{nJ}(z)$$

where $U_J(z)$ is a effective potential given by

$$U_{J}(z) = \kappa^{4} z^{2} + \frac{4a_{J}^{2} - 1}{4z^{2}} + 2\kappa^{2} (b_{J} - 1)$$

$$h_J = \frac{1}{2} \sqrt{(d-2J)^2 + 4(\mu_J R)^2}$$
, $b_J = \frac{1}{2} \left(g_J R^2 + d - 2J \right)$ and $g_J R^2 = 4(J-1)$

Wave Function in momentum space

$$\psi_{q_1\bar{q}_2}(x,k) = \frac{4\pi A}{\kappa \sqrt{x(1-x)}} \exp\left(-\frac{k^2}{2\kappa_1^2 x(1-x)}\right)$$

9 of 24

- *** Model Extension.**
- Introduction of massive quarks:

$$\frac{k^2}{x(1-x)} \to K = \frac{k^2}{x(1-x)} + m_{12}^2 \quad , \quad m_{12}^2 = \frac{m_1^2}{x} + \frac{m_2^2}{1-x} \, .$$

Equivalent to the following change of the kinetic term in the Schrödinger EOM:

$$-rac{d^2}{d\zeta^2}
ightarrow -rac{d^2}{d\zeta^2} + m_{12}^2$$

Wave Function in momentum space

$$\psi_{q_1\bar{q}_2}(x,k) = \frac{4\pi}{\kappa\sqrt{x(1-x)}} f(x,m_1,m_2) \exp\left(-\frac{k^2}{2\kappa_1^2 x(1-x)}\right), \quad \text{with} \quad f(x,m_1,m_2) = A f(x) e^{-\frac{m_{12}^2}{2\lambda^2}}$$

• Extending the effective potential $U \rightarrow U + U_{\rm C} + U_{\rm HF}$, where $U_{\rm C}$ and $U_{\rm HF}$ are the contributions of the color Coulomb and hyperfine (HF) potentials.

$$M_{nJ}^{2} = 4\kappa^{2} \left(n + \frac{L+J}{2} \right) + \int_{0}^{1} dx \left(\frac{m_{1}^{2}}{x} + \frac{m_{2}^{2}}{1-x} \right) f^{2}(x, m_{1}, m_{2}) - \frac{64\alpha_{2}^{2}m_{1}m_{2}}{9(n+L+1)^{2}} + \frac{32\pi\alpha_{2}}{9} \frac{\beta_{5} v}{\mu_{12}}.$$

- ***** Choice of parameters.
- Constituent quark masses: $m = 420 MeV, m_s = 570 MeV, m_c = 1.6 GeV, m_b = 4.8 GeV$
- Dilaton Parameter: $\kappa = 550 MeV$
- Hiperfine Parameter: $v = 10^{-4} GeV^3$
- Constant Coupling with IR freezing.

$$\alpha_s(\mu^2) = \frac{12\pi}{33 - 2N_f} \frac{1}{\ln(\frac{\mu^2 + M_B^2}{\Lambda^2})}$$

With $M_B = 854 MeV$ and $\Lambda = 420 MeV$.

 $\begin{array}{l} \bullet \ \lambda_{qq} = 0.63 \, GeV, \ \lambda_{qs} = 1.20 \, GeV, \ \lambda_{ss} = 1.68 \, GeV, \\ \lambda_{qc} = 2.50 \, GeV, \ \lambda_{sc} = 3.00 \, GeV, \ \lambda_{qb} = 3.89 \, GeV, \\ \lambda_{sb} = 4.18 \, GeV, \ \lambda_{cc} = 4.04 \, GeV, \ \lambda_{cb} = 4.82 \, GeV, \ \lambda_{bb} = 6.77 \, GeV. \end{array}$

* Results.

Masses of light mesons

Meson	n	L	S	Mass [MeV]			
π	0	0,1,2,3	0	140	1355	1777	2099
π	0,1,2,3	0	0	140	1355	1777	2099
K	0	0,1,2,3	0	496	1505	1901	2207
η	0,1,2,3	0	0	544	1552	1946	2248
$f_0[\bar{n}n]$	0,1,2,3	1	1	1114	1600	1952	2244
$f_0[\bar{s}s]$	0,1,2,3	1	1	1304	1762	2093	2372
$a_0(980)$	0,1,2,3	1	1	1114	1600	1952	2372
$\rho(770)$	0,1,2,3	0	1	804	1565	1942	2240
$\rho(770)$	0	0,1,2,3	1	804	1565	1942	2240
$\omega(782)$	0,1,2,3	0	1	804	1565	1942	2240
$\omega(782)$	0	0,1,2,3	1	804	1565	1942	2240
$\phi(1020)$	0,1,2,3	0	1	1019	1818	2170	2447
$a_1(1260)$	0,1,2,3	1	1	1358	1779	2101	2375

12 of 24

Masses of heavy-light mesons								
Meson	J^{P}	n	L	S	Mass [MeV]			
D(1870)	0-	0	0,1,2,3	0	1857	2435	2696	2905
$D^{*}(2010)$	1-	0	0,1,2,3	1	2015	2547	2797	3000
$D_s(1969)$	0-	0	0,1,2,3	0	1963	2621	2883	3085
$D_s^*(2107)$	1-	0	0,1,2,3	1	2113	2725	2977	3173
B(5279)	0-	0	0,1,2,3	0	5279	5791	5964	6089
$B^{*}(5325)$	1-	0	0,1,2,3	1	5336	5843	6015	6139
$B_s(5366)$	0-	0	0,1,2,3	0	5360	5941	6124	6250
$B_{s}^{*}(5413)$	1-	0	0,1,2,3	1	5416	5992	6173	6298

10.00

masses of neavy quarkonia ce, oo and co								
Meson	J^{P}	n	L	S	Mass [Me∨]			
$\eta_c(2986)$	0-	0,1,2,3	0	0	2997	3717	3962	4141
$\psi(3097))$	1^{-}	0,1,2,3	0	1	3097	3798	4038	4213
$\chi_{c0}(3414)$	0^{+}	0,1,2,3	1	1	3635	3885	4067	4226
$\chi_{c1}(3510)$	1+	0,1,2,3	1	1	3718	3963	4141	4297
$\chi_{c2}(3555)$	2+	0,1,2,3	1	1	3798	4038	4213	4367
$\eta_b(9300)$	0-	0,1,2,3	0	0	9428	10190	10372	10473
$\Upsilon(9460)$	1-	0,1,2,3	0	1	9460	10219	10401	10502
$\chi_{b0}(9860)$	0+	0,1,2,3	1	1	10160	10343	10444	10521
$\chi_{b1}(9893)$	1^{+}	0,1,2,3	1	1	10190	10372	10473	10550
$\chi_{b2}(9912)$	2^{+}	0,1,2,3	1	1	10219	10401	10502	10579
$B_c(6276)$	0-	0,1,2,3	0	0	6276	6911	7092	7209

Masses of heavy quarkonia $c\bar{c}$, $b\bar{b}$ and $c\bar{b}$

Decay constants f_P (MeV) of pseudoscalar mesons

Meson	Data	Our
π^{-}	$130.4 \pm 0.03 \pm 0.2$	131
K^-	$156.1 \pm 0.2 \pm 0.8$	155
D^+	206.7 ± 8.9	167
D_s^+	257.5 ± 6.1	170
B^-	193 ± 11	139
B_s^0	$253 \pm 8 \pm 7$	144
B_c	$489 \pm 5 \pm 3$	159

Decay constants f_V (MeV) of vector mesons with open and hidden flavor

Meson	Data	Our	Meson	Data	Our
ρ^+	210.5 ± 0.6	170	$ ho^0$	154.7 ± 0.7	120
D^*	$245 \pm 20^{+3}_{-2}$	167	ω	45.8 ± 0.8	40
D_s^*	$272 \pm 16^{+3}_{-20}$	170	ϕ	76 ± 1.2	66
B^*	$196 \pm 24^{+39}_{-2}$	139	J/ψ	277.6 ± 4	116
B_s^*	$229 \pm 20^{+41}_{-16}$	144	$\Upsilon(1s)$	238.5 ± 5.5	56

15 of 24

Generalized Parton Distributions in a Holographical Model ³

³A. V, Ivan Schmidt, Thomas Gutsche, Valery E. Lyubovitskij, Phys.Rev.D83:036001,2011

16 of 24

Generalized Parton Distributions in a Holographical Model

♦ General Ideas.

* Electromagnetic form factors and GPDs.

$$F_1^{\rho}(t) = \int_0^1 dx \left(\frac{2}{3} H_{\nu}^{\mu}(x, t) - \frac{1}{3} H_{\nu}^{d}(x, t)\right)$$

$$F_1^{n}(t) = \int_0^1 dx \left(\frac{2}{3} H_{\nu}^{d}(x, t) - \frac{1}{3} H_{\nu}^{\mu}(x, t)\right)$$

$$F_2^{\rho}(t) = \int_0^1 dx \left(\frac{2}{3} E_{\nu}^{\mu}(x, t) - \frac{1}{3} E_{\nu}^{d}(x, t)\right)$$

$$F_2^{n}(t) = \int_0^1 dx \left(\frac{2}{3} E_{\nu}^{d}(x, t) - \frac{1}{3} E_{\nu}^{\mu}(x, t)\right)$$

***** Form Factors in AdS / QCD.

(Z. Abidin and C. E. Carlson, Phys. Rev. D**79**, 115003 (2009))

 $F_{1}^{p}(t) = C_{1}(Q^{2}) + \eta_{p}C_{2}(Q^{2}) , F_{1}^{n}(t) = \eta_{p}C_{3}(Q^{2})$ $F_{2}^{p}(t) = \eta_{n}C_{2}(Q^{2}) \text{ and } F_{2}^{n}(t) = \eta_{n}C_{3}(Q^{2})$ where $C_{1}(Q^{2}) = \int dze^{-\Phi}(V(Q, z)/2z^{3})(\psi_{L}^{2}(z) + \psi_{R}^{2}(z))$ $C_{2}(Q^{2}) = \int dze^{-\Phi}(V(Q, z)/2z^{2})(\psi_{L}^{2}(z) - \psi_{R}^{2}(z))$ $C_{3}(Q^{2}) = \int dze^{-\Phi}(2m_{N}V(Q, z)/2z^{3})(\psi_{L}^{2}(z)\psi_{R}^{2}(z))$

$$V(Q, z) = \Gamma\left(1 + \frac{Q^2}{4\kappa^2}\right) U\left(\frac{Q^2}{4\kappa^2}, 0, \kappa^2 z^2\right) = \kappa^2 z^2 \int_0^1 \frac{dx}{(1-x)^2} x \frac{Q^2}{4\kappa^2} e^{-\frac{\kappa^2 z^2 x}{(1-x)}}$$

Generalized Parton Distributions in a Holographical Model

◊ Summary of Results The GPDs obtained look like.

 $H^q_v(x,Q^2) = q(x)x^a$ and $E^q_v(x,Q^2) = e(x)x^a$,

where

 $a = Q^2/(4\kappa^2); \qquad q(x) = \alpha^q \gamma_1 + \beta^q \gamma_2; \qquad e(x) = \beta^q \gamma_3,$

and

 $\alpha^{u} = 2 , \ \alpha^{d} = 1 , \ \beta^{u} = 2\eta_{p} + \eta_{n} , \ \beta^{d} = \eta_{p} + 2\eta_{n}$

 $\gamma_1 = \frac{1}{2}(5+8x+3x^2)$ $\gamma_1 = 1 - 10x + 21x^2 - 12x^3 = \gamma_1 = \frac{6m_N\sqrt{2}}{\kappa}(1-x)^2$

***** Parameters involved.

 $\kappa = 350 MeV \;,\; \eta_P = 0.224 \;,\; \eta_n = -0.239$

fixed to reproduce nucleon mass and anomalous magnetic moment of the nucleon.

19 of 24

Generalized Parton Distributions in a Holographical Model

♦ Nucleon GPDs in impact space.

$$q(x, b_{\perp}) = \int \frac{d^2 k_{\perp}}{(2\pi)^2} H_q(x, k_{\perp}^2) e^{-ib_{\perp} k_{\perp}} \quad \text{and} \quad e^q(x, b_{\perp}) = \int \frac{d^2 k_{\perp}}{(2\pi)^2} E_q(x, k_{\perp}^2) e^{-ib_{\perp} k_{\perp}}$$

bx [fm]

bx [fm]

Generalized Parton Distributions in a Holographical Model

◊ Parton charge and magnetization densities in transverse impact space.

 $\rho_E^N(b_\perp) = \sum_q e_q^N \int_0^1 dx \ q(x, b_\perp) \quad \text{and} \quad \rho_M^N(b_\perp) = \sum_q e_q^N \int_0^1 dx \ e^q(x, b_\perp)$

21 of 24

- In a phenomenological way we extended Brodsky and de Teramonds ideas to map AdS modes with mesonic wave functions with massive quarks, considering additional potentials.
- These ingredients let us describe several mesons.
- For other side we determined the nucleon GPDs using a similar procedure used in some applications of light front holography.
- The nucleon GPDs obtained have an exponential form, as in several phenomenological approaches.
- As in hadronic physics the mesonic wave function and GPDs are very important, we can see that Gauge / Gravity can be considered as a useful tool in some QCD applications.

- In a phenomenological way we extended Brodsky and de Teramonds ideas to map AdS modes with mesonic wave functions with massive quarks, considering additional potentials.
- These ingredients let us describe several mesons.
- For other side we determined the nucleon GPDs using a similar procedure used in some applications of light front holography.
- The nucleon GPDs obtained have an exponential form, as in several phenomenological approaches.
- As in hadronic physics the mesonic wave function and GPDs are very important, we can see that Gauge / Gravity can be considered as a useful tool in some QCD applications.

- In a phenomenological way we extended Brodsky and de Teramonds ideas to map AdS modes with mesonic wave functions with massive quarks, considering additional potentials.
- These ingredients let us describe several mesons.
- For other side we determined the nucleon GPDs using a similar procedure used in some applications of light front holography.
- The nucleon GPDs obtained have an exponential form, as in several phenomenological approaches.
- As in hadronic physics the mesonic wave function and GPDs are very important, we can see that Gauge / Gravity can be considered as a useful tool in some QCD applications.

- In a phenomenological way we extended Brodsky and de Teramonds ideas to map AdS modes with mesonic wave functions with massive quarks, considering additional potentials.
- These ingredients let us describe several mesons.
- For other side we determined the nucleon GPDs using a similar procedure used in some applications of light front holography.
- The nucleon GPDs obtained have an exponential form, as in several phenomenological approaches.
- As in hadronic physics the mesonic wave function and GPDs are very important, we can see that Gauge / Gravity can be considered as a useful tool in some QCD applications.

- In a phenomenological way we extended Brodsky and de Teramonds ideas to map AdS modes with mesonic wave functions with massive quarks, considering additional potentials.
- These ingredients let us describe several mesons.
- For other side we determined the nucleon GPDs using a similar procedure used in some applications of light front holography.
- The nucleon GPDs obtained have an exponential form, as in several phenomenological approaches.
- As in hadronic physics the mesonic wave function and GPDs are very important, we can see that Gauge / Gravity can be considered as a useful tool in some QCD applications.

- In a phenomenological way we extended Brodsky and de Teramonds ideas to map AdS modes with mesonic wave functions with massive quarks, considering additional potentials.
- These ingredients let us describe several mesons.
- For other side we determined the nucleon GPDs using a similar procedure used in some applications of light front holography.
- The nucleon GPDs obtained have an exponential form, as in several phenomenological approaches.
- As in hadronic physics the mesonic wave function and GPDs are very important, we can see that Gauge / Gravity can be considered as a useful tool in some QCD applications.

That's all Folks !

